首页 | 本学科首页   官方微博 | 高级检索  
     


On the Superlinear Convergence Order of the Logarithmic Barrier Algorithm
Authors:Jean-Pierre Dussault  Abdellatif Elafia
Affiliation:(1) Professeur titulaire, département de Mathématiques et Informatique, Université de Sherbrooke, Sherbrooke (Québec), Canada, J1K 2R1;(2) Département de Mathématiques et Informatique, Université de Sherbrooke, Sherbrooke (Québec), Canada, J1K 2R1
Abstract:
Since the pioneering work of Karmarkar, much interest was directed to penalty algorithms, in particular to the log barrier algorithm. We analyze in this paper the asymptotic convergence rate of a barrier algorithm when applied to non-linear programs. More specifically, we consider a variant of the SUMT method, in which so called extrapolation predictor steps allowing reducing the penalty parameter rk +1}k are followed by some Newton correction steps. While obviously related to predictor-corrector interior point methods, the spirit differs since our point of view is biased toward nonlinear barrier algorithms; we contrast in details both points of view. In our context, we identify an asymptotically optimal strategy for reducing the penalty parameter r and show that if rk+1=rkagr with agr < 8/5, then asymptotically only 2 Newton corrections are required, and this strategy achieves the best overall average superlinear convergence order (sim1.1696). Therefore, our main result is to characterize the best possible convergence order for SUMT type methods.
Keywords:logarithmic barrier  penalty algorithms  interior point methods
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号