首页 | 本学科首页   官方微博 | 高级检索  
     

近红外光谱技术结合变量选择方法定性检测食用植物油中的腐霉利
引用本文:孙通,莫欣欣,李晓珍,吴宜青,刘木华. 近红外光谱技术结合变量选择方法定性检测食用植物油中的腐霉利[J]. 光谱学与光谱分析, 2016, 36(12): 3915-3919. DOI: 10.3964/j.issn.1000-0593(2016)12-3915-05
作者姓名:孙通  莫欣欣  李晓珍  吴宜青  刘木华
作者单位:江西农业大学,生物光电技术及应用重点实验室,江西 南昌 330045
基金项目:国家自然科学基金项目(31271612),江西省自然科学基金项目(20151BAB204025),江苏省农产品物理加工重点实验室开放基金项目(JAPP2013-6)
摘    要:
利用近红外光谱技术对食用植物油中的腐霉利进行定性检测研究。以国家标准规定的腐霉利最大残留限量为界线,将不同腐霉利含量的食用植物油样本分为合格组和不合格组。采用QualitySpec台式近红外光谱仪采集两类样本的光谱,利用无信息变量消除 (UVE)和子窗口重排分析(SPA)方法进行波长变量筛选,并应用线性判别分析(LDA)、偏最小二乘-线性判别分析(PLS-LDA)及判别偏最小二乘(DPLS)方法建立两类样本的分类模型。结果表明,近红外光谱技术可以对两类样本进行分类。UVE方法可以有效筛选有用波长变量,提高分类模型的性能。UVE-DPLS所建立的分类模型性能最优,其预测集样本的分类正确率、灵敏度及特异性分别为98.7%,95.0%和100.0%。

关 键 词:近红外  腐霉利  定性检测  变量选择  食用植物油   
收稿时间:2015-10-23

Qualitative Detection of Procymidone in Edible Vegetable Oils by Near Infrared Spectroscopy and Variable Selection Methods
SUN Tong,MO Xin-xin,LI Xiao-zhen,WU Yi-qing,LIU Mu-hua. Qualitative Detection of Procymidone in Edible Vegetable Oils by Near Infrared Spectroscopy and Variable Selection Methods[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3915-3919. DOI: 10.3964/j.issn.1000-0593(2016)12-3915-05
Authors:SUN Tong  MO Xin-xin  LI Xiao-zhen  WU Yi-qing  LIU Mu-hua
Affiliation:Optics-Electronics Application of Biomaterials Lab,Jiangxi Agricultural University,Nanchang 330045,China
Abstract:
In this research,near infrared (NIR)spectroscopy was used to detect procymidone in edible vegetable oils qualitative-ly.Edible vegetable oil samples with different procymidone contents were classified to two groups according to boundary line of maximum residue limit of procymidone in national standard.QualitySpec spectrometer was used to acquire spectra of two group samples,then uninformative variable elimination (UVE)and subwindow permutation analysis (SPA)were used to select inform-ative wavelength variables.At last,several methods such as linear discriminant analysis (LDA),partial least squares-linear dis-criminant analysis (PLS-LDA)and discriminant partial least squares (DPLS)were used to develop classification models.The re-sults indicate that NIR spectroscopy is feasible to classify the two group samples.UVE method can select informative wavelength variables effectively,and improve the performance of classification model.The best model is developed by UVE-DPLS method, the classification correct rate,sensitivity and specificity of prediction samples in this model are 98.7%,95.0% and 100.0%,re-spectively.
Keywords:Near infrared  Procymidone  Qualitative detection  Variable selection  Edible vegetable oil
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号