Abstract: | We have designed a porphyrin with a Schiff-base substituent as a model to study intramolecular hydrogen-bonding. The corresponding complex [Zn(SATPP)(CH3OH)] has been synthesized and characterized by X-ray crystallography, 1H NMR, and UV-Vis spectroscopy. The structure shows that there are three phenyl groups and one salicylideneaminophenyl group at the meso positions of the porphyrin, and the phenol oxygen is involved in double hydrogen bonds, one within the salicylideneaminophenyl and the other between coordinated methanol and phenol oxygen. 1H NMR spectra suggest that the binding of methanol to zinc is an equilibrium process in solution and the equilibrium constant has been determined by UV-Vis measurements. The intramolecular hydrogen bond stabilizes the structure, and the binding affinity increases 10 times over the corresponding TPP (TPP, dianion of meso-5,10,15,20-tetraphenylporphyrin). |