首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Forced convection of gaseous slip-flow in porous micro-channels under Local Thermal Non-Equilibrium conditions
Authors:O M Haddad  M A Al-Nimr  J Sh Al-Omary
Institution:(1) Department of Mechanical Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
Abstract:Steady laminar forced convection gaseous slip-flow through parallel-plates micro-channel filled with porous medium under Local Thermal Non-Equilibrium (LTNE) condition is studied numerically. We consider incompressible Newtonian gas flow, which is hydrodynamically fully developed while thermally is developing. The Darcy–Brinkman–Forchheimer model embedded in the Navier–Stokes equations is used to model the flow within the porous domain. The present study reports the effect of several operating parameters on velocity slip and temperature jump at the wall. Mainly, the current study demonstrates the effects of: Knudsen number (Kn), Darcy number (Da), Forchheimer number (Γ), Peclet number (Pe), Biot number (Bi), and effective thermal conductivity ratio (K R) on velocity slip and temperature jump at the wall. Results are given in terms of skin friction (C f Re *) and Nusselt number (Nu). It is found that the skin friction: (1) increases as Darcy number increases; (2) decreases as Forchheimer number or Knudsen number increases. Heat transfer is found to (1) decreases as the Knudsen number, Forchheimer number, or K R increases; (2) increases as the Peclet number, Darcy number, or Biot number increases.
Keywords:Forced convection  Slip-flow  Porous media  Micro-channel  Graetz problem  Local thermal non-equilibrium
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号