首页 | 本学科首页   官方微博 | 高级检索  
     

基于反向传播神经网络的疲劳裂纹扩展分析
引用本文:叶文静,王莉华. 基于反向传播神经网络的疲劳裂纹扩展分析[J]. 力学季刊, 2021, 42(4): 752-762. DOI: 10.15959/j.cnki.0254-0053.2021.04.013
作者姓名:叶文静  王莉华
作者单位:同济大学航空航天与力学学院,上海200092
基金项目:中央高校基本科研业务费专项;
摘    要:材料发生疲劳断裂时往往会引起重大安全事故,而基于传统数值模拟方法求解疲劳裂纹扩展问题时模型复杂、计算量大.本文基于包含多隐层的反向传播神经网络分析金属材料疲劳裂纹扩展行为,计算了裂纹扩展过程中的von Mises应力场和位移场,并与数值解和实验解进行对比,误差分析结果表明其求解精度高.并基于该神经网络有效预测了裂纹扩展中裂纹长度及裂纹扩展速率的变化过程,预测精度高.该神经网络分析方法可为材料剩余寿命和疲劳强度预测提供研究基础.

关 键 词:疲劳裂纹  反向传播神经网络  von Mises应力  裂纹扩展预测

Fatigue Crack Propagation Analysis Based on Back Propagation Neural Network
YE Wenjing,WANG Lihua. Fatigue Crack Propagation Analysis Based on Back Propagation Neural Network[J]. Chinese Quarterly Mechanics, 2021, 42(4): 752-762. DOI: 10.15959/j.cnki.0254-0053.2021.04.013
Authors:YE Wenjing  WANG Lihua
Abstract:Fatigue fracture of materials often leads to serious safety accidents. However, when solving fatigue crack propagation problem based on traditional numerical simulation method, the model is complicated and the calculation is expensive. In this paper, the fields of von Mises stress and displacement were computed based on the back-propagation neural network with multi hidden layers, and thus the fatigue crack propagation behavior of metal materials were analyzed. The results were compared with the numerical solution and the experimental solution. The error analysis shows that the proposed method has high accuracy. Based on the neural network, the variation of the crack length and the crack growth rate in the crack propagation process can be predicted effectively, with high prediction accuracy. This neural network analysis method can provide a research basis for predicting the residual life and fatigue strength of materials
Keywords:fatigue crack   back propagation neural network   von Mises stress   crack propagation prediction  
本文献已被 万方数据 等数据库收录!
点击此处可从《力学季刊》浏览原始摘要信息
点击此处可从《力学季刊》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号