首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel mesh regeneration algorithm for 2D FEM simulations of flows with moving boundary
Authors:F-L Yang  CH Chen  DL Young
Institution:1. Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan;2. Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan
Abstract:A novel mesh regeneration algorithm is proposed to maintain the mesh structure during a finite element simulation of flows with moving solid boundary. With the current algorithm, a new body-fitted mesh can be efficiently constructed by solving a set of Laplace equations developed to specify the displacements of individual mesh elements. These equations are subjected to specific boundary conditions determined by the instantaneous body motion and other flow boundary conditions. The proposed mesh regeneration algorithm has been implemented on an arbitrary Lagrangian–Eulerian (ALE) framework that employs an operator-splitting technique to solve the Navier–Stokes equations. The integrated numerical scheme was validated by the numerical results of four existing problems: a flow over a backward-facing step, a uniform flow over a fixed cylinder, the vortex-induced vibration of an elastic cylinder in uniformly incident flow, and a complementary problem that compares the transient drag coefficient for a cylinder impulsively set into motion to that measured on a fixed cylinder in a starting flow. Good agreement with the numerical or experimental data in the literature was obtained and new transient flow dynamics was revealed. The scheme performance is further examined with respect to the parameter employed in the mesh regeneration algorithm.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号