首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm
Authors:Nizar Bel Hadj Ali  Landolf Rhode-Barbarigos  Ian F.C. Smith
Affiliation:Applied Computing and Mechanics Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC/IIC/IMAC, Station 18, 1015 Lausanne, Switzerland
Abstract:Tensegrities are spatial, reticulated and lightweight structures that are increasingly investigated as structural solutions for active and deployable structures. Tensegrity systems are composed only of axially loaded elements and this provides opportunities for actuation and deployment through changing element lengths. In cable-based actuation strategies, the deficiency of having to control too many cable elements can be overcome by connecting several cables. However, clustering active cables significantly changes the mechanics of classical tensegrity structures. Challenges emerge for structural analysis, control and actuation. In this paper, a modified dynamic relaxation (DR) algorithm is presented for static analysis and form-finding. The method is extended to accommodate clustered tensegrity structures. The applicability of the modified DR to this type of structure is demonstrated. Furthermore, the performance of the proposed method is compared with that of a transient stiffness method. Results obtained from two numerical examples show that the values predicted by the DR method are in a good agreement with those generated by the transient stiffness method. Finally it is shown that the DR method scales up to larger structures more efficiently.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号