首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid
Authors:Karoline Disser  Giovanni P Galdi  Giusy Mazzone  Paolo Zunino
Abstract:We study inertial motions of the coupled system, \({\mathscr{S}}\), constituted by a rigid body containing a cavity entirely filled with a viscous liquid. We show that for arbitrary initial data having only finite kinetic energy, every corresponding weak solution (à la Leray–Hopf) converges, as time goes to infinity, to a uniform rotation, unless two central moments of inertia of \({\mathscr{S}}\) coincide and are strictly greater than the third one. This corroborates a famous “conjecture” of N.Ye. Zhukovskii in several physically relevant cases. Moreover, we show that, in a known range of initial data, this rotation may only occur along the central axis of inertia of \({\mathscr{S}}\) with the larger moment of inertia. We also provide necessary and sufficient conditions for the rigorous nonlinear stability of permanent rotations, which improve and/or generalize results previously given by other authors under different types of approximation. Finally, we present results obtained by a targeted numerical simulation that, on the one hand, complement the analytical findings, whereas, on the other hand, point out new features that the analysis is yet not able to catch, and, as such, lay the foundation for interesting and challenging future investigation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号