首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A thionine-based reversible redox sensor in a sequential injection system
Authors:Marieta LC Passos  José LFC Lima
Institution:REQUIMTE, Serviço de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal
Abstract:According to the current demands of Green Analytical Chemistry and regarding the need for lower reagent consumption with improved analytical performance, an automatic methodology with a flow-through optosensor incorporating solid-phase spectrophotometric detection was developed. The sensor used in this work was based on the redox state of thionine whose oxidized form is blue and reduced form is colorless with monitoring carried out at 621 nm. This redox indicator was immobilized on gel beads and subsequently packed into a flow-through cell. It was then assembled into a sequential injection system and was shown to be an excellent alternative to monitor enzymatic redox reactions automatically as the redox catalysis is performed by glucose dehydrogenase. This enzyme is a representative dehydrogenase enzyme and uses NAD+ as cofactor, promoting the oxidation of glucose to glucono-lactone and reduction of NAD+ to NADH. The produced NADH promotes color depletion on the surface of the sensor. The calibration graph for glucose was linear between 5.74 × 10−4 and 2.00 × 10−3 mol L−1 and detection limit was 1.72 × 10−4 mol L−1. Glucose concentration in different samples including sera, salines, perfusion solutions, powder for preparing oral solutions and solutions for hemodialysis was determined. The method proved to be reproducible with a RSD < 5% for glucose determinations.
Keywords:Sequential injection analysis  Glucose  Glucose dehydrogenase  Redox sensor  Immobilized thionine  Solid-phase spectrophotometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号