首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lattice energetics and thermochemistry of phenyl acridine-9-carboxylates and 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonates
Authors:B Zadykowicz  K Krzymiński  P Storoniak  J Błażejowski
Institution:(1) Faculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland;
Abstract:The melting points and melting enthalpies of nine phenyl acridine-9-carboxylates—nitro-, methoxy- or halogen-substituted in the phenyl fragment—and their 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonate derivatives were determined by DSC. The volatilisation temperatures and enthalpies of phenyl acridine-9-carboxylates were either measured by DSC or obtained by fitting TG curves to the Clausius–Clapeyron relationship. For the compounds whose crystal structures are known, crystal lattice energies and enthalpies were determined computationally as the sum of electrostatic, dispersive and repulsive interactions. By combining the enthalpies of formation of gaseous phenyl acridine-9-carboxylates or 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonate ions, obtained by the DFT method, and the corresponding enthalpies of sublimation and/or crystal lattice enthalpies, the enthalpies of formation of the compounds in the solid phase were predicted. In the case of the phenyl acridine-9-carboxylates, the computationally predicted crystal lattice enthalpies correspond reasonably well with the experimentally obtained enthalpies of sublimation. The crystal lattices of phenyl acridine-9-carboxylates are stabilised predominantly by dispersive interactions between molecules, whilst the crystal lattices of their quaternary salts are stabilised by electrostatic interactions between ions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号