首页 | 本学科首页   官方微博 | 高级检索  
     


A new procedure for investigating three-dimensional stress fields in a thin plate with a through-the-thickness crack
Authors:Dake Yi  TzuChiang Wang
Affiliation:1.College of Mechanics and Materials,Hohai University,Nanjing,China;2.The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics,Chinese Academy of Sciences,Beijing,China
Abstract:In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J(z), the stress intensity factor K(z) and the tri-axial stress constraint level T z (z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J(z) and T z (z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号