首页 | 本学科首页   官方微博 | 高级检索  
     检索      


B4C in ex-situ spark plasma sintered MgB2
Institution:1. National Institute of Materials Physics, Atomistilor 105bis, 077125, Magurele, Ilfov, Romania;2. Faculty of Materials Science and Engineering, ‘Politehnica’ University of Bucharest, Splaiul Independentei 316, 060042, Bucharest, Romania
Abstract:Powder mixtures of MgB2 and B4C with composition ((MgB2) + (B4C)x, x = 0.005, 0.01, 0.03) were consolidated by Spark Plasma Sintering at 1150 °C for 3 min. The average particle size of B4C raw powder was relatively high of 4 μm. Despite this, it is shown that processing processes are fast and, as in the case of the in-situ routes, for our ex-situ method carbon substitutes for the boron in the crystal lattice of MgB2. Specifics of microstructure are discussed based on electron microscopy observations. Carbon substitution and microstructure contribute to enhancement of the critical current density Jc at high magnetic fields and of the irreversibility field Hirr. Samples are shown to be in the point pinning limit with some tendency toward the grain boundary pinning depending on B4C doping amount and temperature. An optimum composition is found for x = 0.01: for this sample, at 20 K, a Jc of 100 A/cm2 is obtained at 5.35 T. This value is higher than for the pristine MgB2 sample and for an optimum ex-situ nano-SiC-doped sample obtained for the same SPS processing conditions.
Keywords:Spark plasma sintering  Critical current density
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号