首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spontaneous thermal expansion of nematic elastomers
Authors:AR Tajbakhsh  EM Terentjev
Institution:(1) Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom, GB
Abstract:We study the monodomain (single-crystal) nematic elastomer materials, all side-chain siloxane polymers with the same mesogenic groups and crosslinking density, but differing in the type of crosslinking. Increasing the proportion of long di-functional segments of main-chain nematic polymer, acting as network crosslinking, results in dramatic changes in the uniaxial equilibrium thermal expansion on cooling from the isotropic phase. At higher concentration of main chains their behaviour dominates the elastomer properties. At low concentration of main-chain material, we detect two distinct transitions at different temperatures, one attributed to the main-chain, the other to the side-chain component. The effective uniaxial anisotropy of nematic rubber, r(T) = / proportional to the effective nematic order parameter Q(T), is given by an average of the two components and thus reflects the two-transition nature of thermal expansion. The experimental data is compared with the theoretical model of ideal nematic elastomers; applications in high-amplitude thermal actuators are discussed in the end. Received 25 June 2001 and Received in final form 29 September 2001
Keywords:PACS  61  41  +e Polymers  elastomers  and plastics –  61  30  -v Liquid crystals –  46  25  Hf Thermoelasticity and electromagnetic          elasticity (electroelasticity  magnetoelasticity)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号