Abstract: | The atom transfer radical polymerizations (ATRPs) of styrene initiated by a novel initiator, ethyl 2‐N,N‐(diethylamino)dithiocarbamoyl‐butyrate (EDDCB), in both bulk and solution were successfully carried out in the presence of copper(I) bromide (CuBr) and N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 115 °C. The polymerization rate was first‐order with respect to the monomer concentration, and the molecular weights of the obtained polymers increased linearly with the monomer conversions with very narrow molecular weight distributions (as low as 1.17) up to higher conversions in both bulk and solution. The polymerization rate was influenced by various solvents in different degrees in the order of cyclohexanone > dimethylformamide > toluene. The molecular weight distributions of the produced polymers in cyclohexanone were higher than those in dimethylformamide and toluene. The results of 1H NMR analysis and chain extension confirmed that well‐defined polystyrene bearing a photo‐labile N,N‐(diethylamino)dithiocarbamoyl group was obtained via ATRP of styrene with EDDCB as an initiator. The polymerization mechanism for this novel initiation system is a common ATRP process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 32–41, 2006 |