首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal detection of crack echo families in elastic solids
Authors:Asraf Daniel E  Gustafsson Mats G
Affiliation:Signals and Systems Group, Department of Material Science, Uppsala University, Box 528, 751 20 Uppsala, Sweden.
Abstract:Optimal detection of a striplike crack residing in an isotropic elastic solid with coarse microstructure by means of ultrasonic nondestructive evaluation (NDE) is considered. A physics-based approach to derive an optimal detector, which achieves the theoretical limitations constrained by the underlying physics, is presented. State-of-the-art physical models of crack echoes and of stochastic backscattering from the material structure in elastic solids are introduced and unified with the theory of optimal detection to yield a practically useful nonlinear filter bank implementation of the optimal detector. Monte Carlo simulations of the detection performance for the special case of a striplike crack with uncertain angular orientation are presented in the form of receiver operating characteristics (ROCs). These new results represent the physical limitations for detecting a crack under the stated conditions and serve as performance bounds to which other detectors should be compared. A physics-based generalized likelihood ratio (GLR) detector, which relies on the same nonlinear filter bank as the optimal detector, is also presented for the special case of a striplike crack. A comparison between the optimal and the GLR detectors shows that the GLR detector only slightly reduces the performance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号