Abstract: | A robust and sensitive method was developed for the enantiomeric analysis of six chiral pesticides (including metalaxyl, epoxiconazole, myclobutanil, hexaconazole, napropamide, and isocarbophos) in aquatic environmental samples. The optimized chromatographic conditions for the quantification of all the 12 enantiomers were performed with Chiralcel OD‐RH column using mobile phase consisting of 0.1% aqueous formic acid and acetonitrile operated under reversed‐phase conditions and then analyzed using liquid chromatography with tandem mass spectrometry. Twelve enantiomers were detected in multiple reaction monitoring mode. Solid‐phase extraction and dispersive liquid–liquid microextraction were employed in this study. Response surface methodology was applied to assist in the dispersive liquid–liquid microextraction optimization. Under the optimum conditions, recoveries of pesticides enantiomers varied from 83.0 to 103.2% at two spiked levels with relative standard deviation less than 11.5%. The concentration factors were up to 1000 times. Method detection and quantification limits varied from 0.11 to 0.48 ng/L and from 0.46 to 1.49 ng/L, respectively. Finally, this method was used to determination of the enantiomers composition of the six pesticides in environmental aqueous matrices, which will help better understand the behavior of individual enantiomer and make accurate risk assessment to ecosystems. |