首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrile imines: matrix isolation, IR spectra, structures, and rearrangement to carbodiimides
Authors:Bégué Didier  Qiao Greg GuangHua  Wentrup Curt
Affiliation:Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, Equipe Chimie Physique, UMR 5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France.
Abstract:
The structures and reactivities of nitrile imines are subjects of continuing debate. Several nitrile imines were generated photochemically or thermally and investigated by IR spectroscopy in Ar matrices at cryogenic temperatures (Ph-CNN-H 6, Ph-CNN-CH(3)17, Ph-CNN-SiMe(3)23, Ph-CNN-Ph 29, Ph(3)C-CNN-CPh(3)34, and the boryl-CNN-boryl derivative 39). The effect of substituents on the structures and IR absorptions of nitrile imines was investigated computationally at the B3LYP/6-31G* level. IR spectra were analyzed in terms of calculated anharmonic vibrational spectra and were generally in very good agreement with the calculated spectra. Infrared spectra were found to reflect the structures of nitrile imines accurately. Nitrile imines with IR absorptions above 2200 cm(-1) have essentially propargylic structures, possessing a CN triple bond (typically PhCNNSiMe(3)23, PhCNNPh 29, and boryl-CNN-boryl 39). Nitrile imines with IR absorptions below ca. 2200 cm(-1) are more likely to be allenic (e.g., HCNNH 1, PhCNNH 6, HCNNPh 43, PhCNNCH(3)17, and Ph(3)C-CNN-CPh(3)34). All nitrile imines isomerize to the corresponding carbodiimides both thermally and photochemically. Monosubstituted carbodiimides isomerize thermally to the corresponding cyanamides (e.g., Ph-N═C═N-H 5 → Ph-NH-CN 8), which are therefore the thermal end products for nitrile imines of the types RCNNH and HCNNR. This tautomerization is reversible under flash vacuum thermolysis conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号