首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Perfect state transfer in Laplacian quantum walk
Authors:Rachael Alvir  Sophia Dever  Benjamin Lovitz  James Myer  Christino Tamon  Yan Xu  Hanmeng Zhan
Institution:1.Department of Mathematics and Statistics,Colorado Mesa University,Grand Junction,USA;2.Department of Mathematics,University of Texas at Austin,Austin,USA;3.Mathematics Department,Bates College,Lewiston,USA;4.Department of Mathematics,SUNY Potsdam,Potsdam,USA;5.Department of Computer Science,Clarkson University,Potsdam,USA;6.Department of Combinatorics and Optimization,University of Waterloo,Waterloo,Canada
Abstract:For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix \(U(t) = \exp (-itM)\), where t varies over the reals. Perfect state transfer occurs between vertices u and v at time \(\tau \) if the (uv)-entry of \(U(\tau )\) has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an n-vertex graph has perfect state transfer at time \(\tau \) relative to the Laplacian, then so does its complement if \(n\tau \in 2\pi {\mathbb {Z}}\). As a corollary, the join of \(\overline{K}_{2}\) with any m-vertex graph has perfect state transfer relative to the Laplacian if and only if \(m \equiv 2\pmod {4}\). This was previously known for the join of \(\overline{K}_{2}\) with a clique (Bose et al. in Int J Quant Inf 7:713–723, 2009). If a graph G has perfect state transfer at time \(\tau \) relative to the normalized Laplacian, then so does the weak product \(G \times H\) if for any normalized Laplacian eigenvalues \(\lambda \) of G and \(\mu \) of H, we have \(\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}\). As a corollary, a weak product of \(P_{3}\) with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of \(P_{3}\) has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (Godsil in Discret Math 312(1):129–147, 2011).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号