首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct Electron Transfer and Electrocatalysis of Myoglobin Based on its Direct Immobilization on Carbon Ionic Liquid Electrode
Authors:Xiaodong Shangguan  Jianbin Zheng
Institution:1. Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, P.?R. China;2. Department of Mathematical Sciences, Baoji Vocational Technology College, Baoji, Shaanxi 721013, P.?R. China
Abstract:Direct electron transfer of myoglobin (Mb) was achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1‐butyl pyridinium hexaflourophosphate (BuPy]PF6]) as binder for the first time. A pair of well‐defined, quasi‐reversible redox peaks was observed for Mb/CILE resulting from Mb redox of heme Fe(III)/Fe(II) redox couple in 0.1 M phosphate buffer solution (pH 7.0) with oxidation potential of ?0.277 V, reduction potential of ?0.388 V, the formal potential E°′ (E°′=(Epa+Epc)/2) at ?0.332 V and the peak‐to‐peak potential separation of 0.111 V at 0.5 V/s. The average surface coverage of the electroactive Mb immobilized on the electrode surface was calculated as 1.06±0.03×10?9 mol cm?2. Mb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards the reduction of H2O2. The cathodic peak current of Mb was linear to H2O2 concentration in the range from 6.0 μM to 160 μM with a detection limit of 2.0 μM (S/N=3). The apparent Michaelis–Menten constant (Kequation image and the electron transfer rate constant (ks) were estimated to be 140±1 μM and 2.8±0.1 s?1, respectively. The biosensor achieved the direct electrochemistry of Mb on CILE without the help of any supporting film or any electron mediator.
Keywords:Direct electron transfer  Electrocatalysis  Carbon ionic liquid electrode  Myoglobin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号