首页 | 本学科首页   官方微博 | 高级检索  
     


Coated microfluidic devices for improved chiral separations in microchip electrophoresis
Authors:Ludwig Martin  Belder Detlev
Affiliation:Abteilung für Chromatographie, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
Abstract:
Chiral separations of fluorescein isothiocyanate-labeled amines have been performed in poly(vinyl alcohol) (PVA)-coated microfluidic glass chips. Baseline separation of enantiomers could be realized in coated devices while they could not be resolved in uncoated chips. The electroosmotic flow (EOF) in PVA-coated channels is suppressed over a wide pH range which leads to a considerable improved reproducibility of migration times in repetitive analysis. Due to the high resolution obtained in such devices, it was possible to reliable determine the enantiomeric purity with high accuracy. One percent of the minor enantiomer could be determined in the presence of large excess of the other enantiomer. As the EOF was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Applying PVA-coated channels considerable improved precision of migration times was found. The relative standard deviation of migration times was below 1% in PVA-coated devices. Accordingly, excessive rinsing or etching steps in order to stabilize the EOF could be omitted while this was necessary for a reliable operation of uncoated devices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号