Effect of Pentanol Partitioning on Solubilization of Tetrachloroethylene and Gasoline by Sodium Dodecyl Sulfate Micelles |
| |
Authors: | Zhou Meifang Rhue R. Dean |
| |
Affiliation: | South Florida Water Management District, Chemistry Laboratory Section, 3301 Gun Club Road, West Palm Beach, Florida, 33416-4680 |
| |
Abstract: | The effect of interfacial pentanol concentrations on solubilization of tetrachloroethylene (PCE) and gasoline by sodium dodecyl sulfate (SDS) micelles was compared to that for dodecane solubilization, which had been measured in a previous study. The solubilization of PCE and gasoline reached their maximum values at a 1 : 3 SDS-to-pentanol molar ratio in the interface. As pentanol concentrations increased beyond that necessary for interfacial saturation, solubilization of PCE and gasoline decreased. This behavior was similar to that observed when dodecane was the oil phase. Electrical conductivity of aqueous SDS/pentanol solutions followed a trend similar to that for oil solubilization, reaching a maximum value at a 1 : 3 molar ratio of SDS to pentanol in the interface. The results of this and previous studies suggest that pentanol partitioning in SDS micelles can be described by a simple two-region model: Region I is the interface between the water-continuous phase and oil and Region II is the micelle inner core. When the mole fraction of pentanol in the interface is less than 0.75, pentanol partitions strongly into Region I, where it acts as a cosurfactant along with SDS and enhances oil solubilization. Above 0.75 mole fraction in the interface, pentanol partitions strongly into Region II, where it acts as a polar oil and competes with other oils for solubilization. Copyright 2001 Academic Press. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|