Theoretical study of V20O50 oxovanadate cluster compounds with alkali metal atoms |
| |
Authors: | O. P. Charkin N. M. Klimenko |
| |
Affiliation: | 1.Institute of Problems of Chemical Physics,Russian Academy of Sciences,Chernogolovka,Russia;2.Lomonosov Institute of Fine Chemical Technologies,Moscow Technological University,Moscow,Russia |
| |
Abstract: | The energies and structural and spectroscopic characteristics of model М n V20O50 systems corresponding to compounds of the V20O50 oxovanadate cluster with alkali metal atoms (M = Li, K; n = 1–20) have been calculated by the density functional theory method (B3LYP). It has been demonstrated that, in the K n V20O50 compounds, all the metal atoms are coordinated in the outer sphere to the edges of the hollow dodecahedral V20O50 cage to form three-center Ot?K?Ot bridges with terminal oxygen atoms. In the Li n V20O50 compounds, the metal atoms can be coordinated both outside and inside the V20O50 cage. At n = 4, the most favorable isomer is endohedral Li4O4@V20O46 in the quintet state (S = 5), in which the four Li atoms are located in the inner cavity of the inverted O4@V20O46 isomer of the oxovanadate cluster with four O atoms oriented to the cage center and form with them a corrugated eight-membered ring Li4O4. The decrease in energy caused by the formation of the endohedral isomer (4Li + V20O450 → Li4O4@V20O46) is estimated at ~377 kcal/mol. The exohedral isomer 4Li ? V20O50 (S = 5), in which the Li atoms are coordinated to the outside of the V20O50 cage, is ~23 kcal/mol less favorable. For the other members of the Li series with n from 4 to 20, the endohedral isomers with the inner Li4O4 ring remain preferable. At n > 4, the extra Li atoms fill the outer sphere of the cage, being coordinated to its edges to form three-center Ot?Li?Ot bridges with terminal oxygen atoms. The specific energy of formation of Li n V20O50 (by the scheme nLi + V20O450 → Li4O4@V20O46Lin-4) per Li atom monotonically decrease from ~98 (n = 2) to ~80 kcal/mol (n = 20). For K n V20O50, these energies are ~20?25 kcal/mol lower than for the lithium analogues and decrease from ~80 (n = 2) to ~64 kcal/mol (n = 12). The atoms of both alkali metals in the M n V20O50 systems have large positive effective charges (0.85e?0.92e for K and 0.65e?0.78e for Li), which also monotonically decrease with increasing n. The addition of each alkali metal atom is accompanied by its ionization (М → М+) along with the reduction of one of the neighboring pentavalent vanadium atoms to the tetravalent state (VV → VIV) and localization of the unpaired electron in its 3d shell. For all Li n V20O50 complexes, the states with maximal multiplicity and parallel spins are the most preferable. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|