Abstract: | ![]()
Co-doped MnCeOx/ZrO2 catalysts were synthesized by impregnation method and their low temperature deNOx performance were evaluated. The physicochemical properties of the catalysts were studied. The results showed that the doped Co could promote the deNOx performance of MnCeOx/ZrO2 significantly, and the doped catalyst with the Co/Mn molar ratio of 1:2 possessed the best catalytic performance. Compared with pure MnCeOx/ZrO2 catalyst, the deNOx efficiency of the optimal 1Co2MnCeOx/ZrO2 was higher to 93% at 100 °C, improved nearly by 17%. The complete removal of NO was achieved at the temperature range of 120–250 °C. The promoted catalytic performance of Co-doped MnCeOx/ZrO2 catalyst was mainly attributed to the improvement of the catalyst support structure and surface acidity by Co. The catalytic reaction of NO with NH3 over 1Co2MnCeOx/ZrO2 catalyst follows both Eley–Rideal mechanism and Langmiur–Hinshelwood mechanism. |