首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling track-terrain interaction for transient robotic vehicle maneuvers
Authors:Javier M. Solis
Affiliation:Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, C2200, Austin, TX 78712-0292, USA
Abstract:This article describes integration of a realistic and efficient track-terrain interaction model with a multibody dynamics model of a robotic tracked vehicle. The track-terrain interface continuum is approximated by discretized and parameterizable force elements. Of particular note is a kinematic model used to estimate dynamic shear displacement, taking the form of a partial differential equation. This equation is approximated by a series of ordinary differential equations, making it compatible with multibody dynamics model formulations. Comparisons between simulated results and those obtained from field testing with a remotely-operated unmanned tracked vehicle are made to evaluate the effectiveness of this approach and to validate the use of nominal parameter data from the literature. The test vehicle was subjected to four different types of maneuvers (go-and-stop, j-turn, double lane change, and zero radius turn) on asphalt and dry sand. Simulated results using both the dynamic and steady-state track-terrain interaction models match very well with those obtained from the tests, except for the zero radius turning maneuver in sand. In this case, bulldozing effects must be incorporated to improve prediction of lateral forces.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号