首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Continuum characterization of novel pseudoelasticity of ZnO nanowires
Authors:AJ Kulkarni
Institution:The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
Abstract:A novel pseudoelastic behavior was recently discovered in 0 1 1¯ 0]-oriented ZnO nanowires under uniaxial tensile loading and unloading. This behavior results from a reversible transformation from the parent wurtzite (WZ) structure to a previously unknown graphitic structure (HX) and is associated with recoverable strains up to 16%. In this paper, a micromechanical continuum model is developed to characterize this behavior. Using the first law of thermodynamics, the model decomposes the transformation into an elastic process of structural transitions between WZ and HX through a sequence of thermodynamically reversible phase equilibrium states and a thermodynamically irreversible process of interface propagation. The elastic equilibrium transition process is modeled with strain energy functions of the two constituent phases which are obtained from independent molecular dynamics calculations. The dissipative interface propagation process is modeled phenomenologically with a function which relates dissipation to the interfacial area between the two phases. The model captures major characteristics of the behavior of wires with lateral dimensions between 20 and 40 Å over the temperature range of 100-500 K.
Keywords:Micromechanical model  Zinc oxide  Nanowires  Pseudoelasticity  Phase transformation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号