首页 | 本学科首页   官方微博 | 高级检索  
     


Aluminium in the human brain
Authors:Christopher Exley and Emily R. House
Affiliation:(1) The Birchall Centre, Lennard-Jones Laboratories, Keele University, ST5 5BG Staffordshire, UK
Abstract:

Abstract  

An inevitable consequence of humans living in the Aluminium Age is the presence of aluminium in the brain. This non-essential, neurotoxic metal gains entry to the brain throughout all stages of human development, from the foetus through to old age. Human exposure to myriad forms of this ubiquitous and omnipresent metal makes its presence in the brain inevitable, while the structure and physiology of the brain makes it particularly susceptible to the accumulation of aluminium with age. In spite of aluminium’s complete lack of biological essentiality, it actually participates avidly in brain biochemistry and substitutes for essential metals in critical biochemical processes. The degree to which such substitutions are disruptive and are manifested as biological effects will depend upon the biological availability of aluminium in any particular physical or chemical compartment, and will under all circumstances be exerting an energy load on the brain. In short, the brain must expend energy in its ‘unconscious’ response to an exposure to biologically available aluminium. There are many examples where ‘biological effect’ has resulted in aluminium-induced neurotoxicity and most potently in conditions that have resulted in an aluminium-associated encephalopathy. However, since aluminium is non-essential and not required by the brain, its biological availability will only rarely achieve such levels of acuity, and it is more pertinent to consider and investigate the brain’s response to much lower though sustained levels of biologically reactive aluminium. This is the level of exposure that defines the putative role of aluminium in chronic neurodegenerative disease and, though thoroughly investigated in numerous animal models, the chronic toxicity of aluminium has yet to be addressed experimentally in humans. A feasible test of the ‘aluminium hypothesis’, whereby aluminium in the human brain is implicated in chronic neurodegenerative disease, would be to reduce the brain’s aluminium load to the lowest possible level by non-invasive means. The simplest way that this aim can be fulfilled in a significant and relevant population is by facilitating the urinary excretion of aluminium through the regular drinking of a silicic acid-rich mineral water over an extended time period. This will lower the body and brain burden of aluminium, and by doing so will test whether brain aluminium contributes significantly to chronic neurodegenerative diseases such as Alzheimer’s and Parkinson’s.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号