State-Independent Geometric Quantum Gates via Nonadiabatic and Noncyclic Evolution |
| |
Authors: | Yue Chen Li-Na Ji Zheng-Yuan Xue Yan Liang |
| |
Affiliation: | Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, and School of Physics, South China Normal University, Guangzhou, 510006 China |
| |
Abstract: | Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation. |
| |
Keywords: | geometric phases noncyclic quantum gates superconducting circuits |
|
|