首页 | 本学科首页   官方微博 | 高级检索  
     


Min-max and robust polynomial optimization
Authors:J. B. Lasserre
Affiliation:1.LAAS-CNRS and Institute of Mathematics, LAAS,Toulouse Cédex 4,France
Abstract:
We consider the robust (or min-max) optimization problem
$J^*:=max_{mathbf{y}in{Omega}}min_{mathbf{x}}{f(mathbf{x},mathbf{y}): (mathbf{x},mathbf{y})inmathbf{Delta}}$
where f is a polynomial and ({mathbf{Delta}subsetmathbb{R}^ntimesmathbb{R}^p}) as well as ({{Omega}subsetmathbb{R}^p}) are compact basic semi-algebraic sets. We first provide a sequence of polynomial lower approximations ({(J_i)subsetmathbb{R}[mathbf{y}]}) of the optimal value function ({J(mathbf{y}):=min_mathbf{x}{f(mathbf{x},mathbf{y}): (mathbf{x},mathbf{y})in mathbf{Delta}}}). The polynomial ({J_iinmathbb{R}[mathbf{y}]}) is obtained from an optimal (or nearly optimal) solution of a semidefinite program, the ith in the “joint + marginal” hierarchy of semidefinite relaxations associated with the parametric optimization problem ({mathbf{y}mapsto J(mathbf{y})}), recently proposed in Lasserre (SIAM J Optim 20, 1995-2022, 2010). Then for fixed i, we consider the polynomial optimization problem ({J^*_i:=maxnolimits_{mathbf{y}}{J_i(mathbf{y}):mathbf{y}in{Omega}}}) and prove that ({hat{J}^*_i(:=displaystylemaxnolimits_{ell=1,ldots,i}J^*_ell)}) converges to J* as i → ∞. Finally, for fixed ? ≤ i, each ({J^*_ell}) (and hence ({hat{J}^*_i})) can be approximated by solving a hierarchy of semidefinite relaxations as already described in Lasserre (SIAM J Optim 11, 796–817, 2001; Moments, Positive Polynomials and Their Applications. Imperial College Press, London 2009).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号