首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A cofacial metal–organic framework based photocathode for carbon dioxide reduction
Authors:Bowen Ding  Bun Chan  Nicholas Proschogo  Marcello B Solomon  Cameron J Kepert  Deanna M D'Alessandro
Institution:School of Chemistry, The University of Sydney, Sydney New South Wales 2006 Australia, Fax: +61 3 9351 3329, +61 2 9351 3777 ; Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki-shi, Nagasaki 852-8521 Japan
Abstract:Innovative and robust photosensitisation materials play a cardinal role in advancing the combined effort towards efficient solar energy harvesting. Here, we demonstrate the photocathode functionality of a Metal–Organic Framework (MOF) featuring cofacial pairs of photo- and electro-active 1,4,5,8-naphthalenediimide (NDI) ligands, which was successfully applied to markedly reduce the overpotential required for CO2 reduction to CO by a well-known rhenium molecular electrocatalyst. Reduction of Cd(DPNDI)(TDC)]n (DPNDI = N,N′-di(4-pyridyl)-1,4,5,8-naphthalenediimide, H2TDC = thiophene-2,5-dicarboxylic acid) to its mixed-valence state induces through-space Intervalence Charge Transfer (IVCT) within cofacial DPNDI units. Irradiation of the mixed-valence MOF in the visible region generates a DPNDI photoexcited radical monoanion state, which is stabilised as a persistent species by the inherent IVCT interactions and has been rationalised using Density Functional Theory (DFT). This photoexcited radical monoanion state was able to undergo charge transfer (CT) reduction of the rhenium molecular electrocatalyst to effect CO generation at a lower overpotential than that required by the discrete electrocatalyst itself. The exploitation of cofacial MOFs opens new directions for the design philosophy behind light harvesting materials.

The photocathode functionality of a Metal–Organic Framework (MOF) featuring cofacial photo- and electro-active ligands provides a new approach to CO2 reduction via charge transfer with a rhenium electrocatalyst.

The development of photocathode materials for CO2 reduction and hydrogen evolution catalyses has traditionally focussed on photosensitising transition metal complexes or nanostructured solid state semiconductors.1,2 At the nascent frontier between robust solid state semiconductors and synthetically protean metal complexes are photo-/electro-active Metal–Organic Frameworks (MOFs) that consolidate the flexibility of homogeneous systems into the robust heterogeneous phase.3 Contrasting with reported MOF examples, natural photosynthesis remains one of the most efficient light harvesting systems.4 One common reaction centre adopted in photosynthesis features a redox-active cofacial dimer of chlorophyll pigment molecules.5 This cofacial moiety stabilises the photoexcited charge separated state through intra-dimer Intervalence Charge Transfer (IVCT) interactions, enabling the trapping and conversion of light to chemical energy. Recently, we characterised IVCT interactions upon reduction to the mixed-valence state in the MOF Zn2(TDC)2(DPPTzTz)2]n (DPPTzTz = 2,5-bis(4-(4-pyridyl)phenyl)thiazolo5,4-d]thiazole and H2TDC = thiophene-2,5-dicarboxylic acid) featuring cofacial dimers of the thiazolothiazole redox-active core, and probed its structure–activity dependence computationally and experimentally.6–9 Subsequently, we sought design a new MOF featuring cofacial pairs of the photo- and redox-active N,N′-di(4-pyridyl)-1,4,5,8-naphthalenediimide (DPNDI) ligand, as a conceptually neoteric photosensitiser for incorporation into systems relevant towards artificial photosynthesis.The naphthalene diimide (NDI) core was selected for its photoactive radical monoanion state.10 For a number of discrete systems, Wasielewski and coworkers have computationally and experimentally demonstrated the ability to photoexcite the easily accessible NDI radical monoanion using visible light, facilitating its transient photoelectrochemical reduction of Re based catalytic CO2 reduction sites.2,11–14 Recently, Goswami et al. synthesised a Zr NDI-based MOF, applying this as a radical state heterogeneous photosensitiser to decompose dichloromethane.15Here, we describe the synthesis of a new photo- and redox-active MOF Cd(DPNDI)(TDC)]n, denoted csiMOF-6 (cofacial stacked IVCT), featuring cofacial dimers of the DPNDI ligand. Cofacial DPNDI MOFs have been reported previously by Takashima et al.16 and Sikdar et al.,17 where guest dependent charge transfer (CT) and neutral state photoexcitation behaviours were examined. Dinolfo et al. also incorporated DPNDI into a rhenium based cofacial complex, where its mixed-valence IVCT behaviour was probed using electrochemical and spectroelectrochemical (SEC) techniques.18 We envisaged that the cofacial NDI units in csiMOF-6 would stabilise its photoexcited radical monoanion state by IVCT interactions, akin to cofacial moieties in natural photosynthsesis processes. This strengthens the persistence of the NDI photoexcited radical monoanion state, thereby improving its efficacy at photoelectrochemical reduction of catalytically active sites. Effectiveness of the cofacial design principle behind csiMOF-6 photocathodes was verified using a combined experimental and computational approach. The successful photocathode performance of csiMOF-6 under broad band visible light irradiation encompassed its photoelectrochemical reduction of the Re(bipy-tBu)(CO)3Cl] (bipy-tBu = 4,4′-di-tert-butyl-2,2′-bipyridine, developed by Smieja et al.19) CO2 reduction electrocatalyst, resulting in CO generation at reduced overpotential requirements.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号