首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear dynamics and small damping signal control of chaos in a model of flow-induced oscillations of cylinders
Institution:1. Department of Aeronautics, Imperial College London, London SW7 2AZ, UK;2. School of Mechanical Engineering, University of Adelaide, South Australia 5005, Australia
Abstract:Nonlinear dynamics of flow-induced oscillations of cylinders is investigated. The approach in our paper is made to introduce an harmonic forced vibration in the coupling term of the structural equation since this may be the consequence of approximating the potential force that could act as a periodic excitation. The method of multiple scales is used to determine the steady state responses. Amplitude and phase modulation equations as well as external force-response and frequency-response curves are obtained. We show that harmonic excitation can induce resonance phenomena in the oscillation of the structure for a range of frequencies of potential force, and also lock-in phenomena appear in the structure part. Also, we find that the structure can be damaged as the amplitude of the potential excitation increases. Numerical simulations confirm the existence of chaotic vibration in the system, a small damping signal control is used to suppress it since it may cause fatigue in the system. The model developed is expected to yield better results for structure in water.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号