首页 | 本学科首页   官方微博 | 高级检索  
     检索      


One-dimensional interfacial area transport of vertical upward bubbly flow in narrow rectangular channel
Institution:1. Department of Nuclear Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan;2. Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan;3. School of Nuclear Engineering, Purdue University West Lafayette, IN 47907-2017, USA
Abstract:The design and safety analysis for miniature heat exchangers, the cooling system of high performance microelectronics, research nuclear reactors, fusion reactors and the cooling system of the spallation neutron source targets requires the knowledge of the gas–liquid two-phase flow in a narrow rectangular channel. In this study, flow measurements of vertical upward air–water flows in a narrow rectangular channel with the gap of 0.993 mm and the width of 40.0 mm were performed at seven axial locations by using the imaging processing technique. The local frictional pressure loss gradients were also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 0.214 m/s to 2.08 m/s and from 3.92% to 42.6%, respectively. The developing two-phase flow was characterized by the significant axial changes of the local flow parameters due to the bubble coalescence and breakup in the tested flow conditions. The existing two-phase frictional multiplier correlations such as Chisholm, 1967, Mishima et al., 1993 and Lee and Lee (2001) were verified to give a good prediction for the measured two-phase frictional multiplier. The predictions of the drift-flux model with the rectangular channel distribution parameter correlation of Ishii (1977) and several existing drift velocity correlations of Ishii, 1977, Hibiki and Ishii, 2003 and Jones and Zuber (1979) agreed well with the measured void fractions and gas velocities. The interfacial area concentration (IAC) model of Hibiki and Ishii (2002) was modified by taking the channel width as the system length scale and the modified IAC model could predict the IAC and Sauter mean diameter acceptably.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号