首页 | 本学科首页   官方微博 | 高级检索  
     


Data Compression for a Voltammetric Electronic Tongue Modelled with Artificial Neural Networks
Abstract:
Abstract

In the study of voltammetric electronic tongues, a key point is the preprocessing of the departure information, the voltammograms which form the response of the sensor array, prior to classification or modeling with advanced chemometric tools. This work demonstrates the use of the discrete wavelet transform (DWT) for compacting these voltammograms prior to modeling. After compression, a system based on artificial neural networks (ANNs) was used for the quantification of the electroactive substances present, using the obtained wavelet decomposition coefficients as their inputs. The Daubechies wavelet of fourth order permitted an effective compression up to 16 coefficients, reducing the original dimension by ca. 10 times. The case studied is a mixture of three oxidizable amino acids:tryptophan, cysteine, and tyrosine. With the reduced information, one ANN per specie was trained using the Bayesian regularization algorithm. The proposed procedure was compared with the more conventional treatments of downsampling the voltammogram, or its feature extraction employing principal component analysis prior to ANNs.
Keywords:Voltammetric electronic tongue  discrete wavelet transform  artificial neural networks  PCA  oxidizable aminoacids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号