首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
Authors:Kevin K Chen  Jonathan H Tu  Clarence W Rowley
Institution:1. Department of Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
Abstract:Dynamic mode decomposition (DMD) is an Arnoldi-like method based on the Koopman operator. It analyzes empirical data, typically generated by nonlinear dynamics, and computes eigenvalues and eigenmodes of an approximate linear model. Without explicit knowledge of the dynamical operator, it extracts frequencies, growth rates, and spatial structures for each mode. We show that expansion in DMD modes is unique under certain conditions. When constructing mode-based reduced-order models of partial differential equations, subtracting a mean from the data set is typically necessary to satisfy boundary conditions. Subtracting the mean of the data exactly reduces DMD to the temporal discrete Fourier transform (DFT); this is restrictive and generally undesirable. On the other hand, subtracting an equilibrium point generally preserves the DMD spectrum and modes. Next, we introduce an ??optimized?? DMD that computes an arbitrary number of dynamical modes from a data set. Compared to DMD, optimized DMD is superior at calculating physically relevant frequencies, and is less numerically sensitive. We test these decomposition methods on data from a two-dimensional cylinder fluid flow at a Reynolds number of?60. Time-varying modes computed from the DMD variants yield low projection errors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号