首页 | 本学科首页   官方微博 | 高级检索  
     


A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory
Authors:Wang Jin  Han Ju-Guang
Affiliation:Department of Chemistry, University of Guelph, Guelph N1G 2W1, Ontario, Canada. jwang02@uoguelph.ca
Abstract:
The geometries, stabilities, and electronic properties of Ge(n) and CuGe(n) (n = 2-13) clusters have been systematically investigated by using density-functional approach. According to optimized CuGe(n) geometries, growth patterns of Cu-capped Ge(n) or Cu-substituted Ge(n+1) clusters for the small- or middle-sized CuGe(n) clusters as well as growth patterns of Cu-concaved Ge(n) or Ge-capped CuGe(n-1) clusters for the large-sized CuGe(n) clusters are apparently dominant. The average atomic binding energies and fragmentation energies are calculated and discussed; particularly, the relative stabilities of CuGe10 and Ge10 are the strongest among all different sized CuGe(n) and Ge(n) clusters, respectively. These findings are in good agreement with the available experimental results on CoGe10- and Ge10 clusters. Consequently, unlike some transition metal (TM)Si12, the hexagonal prism CuGe12 is only low-lying structure; however, the basket-like structure is located as the lowest-energy structure. Different from some TM-doped silicon clusters, charge always transfers from copper to germanium atoms in all different sized clusters. Furthermore, the calculated highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gaps are obviously decreased when Cu is doped into the Ge(n) clusters, together with the decrease of HOMO-LUMO gaps, as the size of clusters increases. Additionally, the contribution of the doped Cu atom to bond properties and polarizabilities of the Ge(n) clusters is also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号