首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络的淫羊藿红外光谱的研究
引用本文:张勇,金向军,谢云飞,赵冰,丛茜. 基于人工神经网络的淫羊藿红外光谱的研究[J]. 光谱学与光谱分析, 2008, 28(6): 1251-1254. DOI: 10.3964/j.issn.1000-0593.2008.06.012
作者姓名:张勇  金向军  谢云飞  赵冰  丛茜
作者单位:吉林大学地面机械仿生技术教育部重点实验室,吉林,长春,130022;吉林工程技术师范学院信息工程学院,吉林,长春,130052;吉林大学超分子结构与材料教育部重点实验室,吉林,长春,130012;白城师范学院化学系,吉林,白城,137000;吉林大学超分子结构与材料教育部重点实验室,吉林,长春,130012;吉林大学地面机械仿生技术教育部重点实验室,吉林,长春,130022
基金项目:国家自然科学基金 , 吉林省科技厅科研项目 , 教育部留学回国人员科研启动基金
摘    要:对于不同产地和不同栽培条件的药材, 其药效的不同是由于其所含化学成分和各成分含量的比例不同所造成的, 这种差异将造成红外图谱的差异。但这些差异非常细微,单纯地从谱图去区分其特征是非常困难的。文章利用傅里叶变换红外光谱,测定了42种来自吉林3个不同产地的淫羊藿样品的红外光谱,并对光谱数据进行了相应的预处理。为了提高神经网络的训练速度,在利用人工神经网络建立模型之前,通过小波变换的方法对光谱变量进行了压缩。同时对建立的模型的相关参数进行了详细的讨论。实验表明,建立的模型能够正确地对42个淫羊藿样品进行产地鉴别,同时避免了传统光谱分析对药材的分离和提取,从而为中药质量的科学控制和现代化管理提供了可靠的依据。

关 键 词:中草药  淫羊藿  红外光谱  人工神经网络  小波变换
收稿时间:2007-01-26

Infrared Spectroscopy of Epimedium Brevicornum Based on Artificial Neural Network
ZHANG Yong,JIN Xiang-jun,XIE Yun-fei,ZHAO Bing,CONG Qian. Infrared Spectroscopy of Epimedium Brevicornum Based on Artificial Neural Network[J]. Spectroscopy and Spectral Analysis, 2008, 28(6): 1251-1254. DOI: 10.3964/j.issn.1000-0593.2008.06.012
Authors:ZHANG Yong  JIN Xiang-jun  XIE Yun-fei  ZHAO Bing  CONG Qian
Affiliation:1. Key Laboratory for Terrain-Machine Bionics Engineering, Ministry of Education, Jilin University, Changchun 130022, China2. Jilin Teachers’ Institute of Engineering and Technology, Changchun 130052, China3. Key Laboratory for Supramolecular Structure and Material of Ministry of Education, Changchun 130012, China4. Department of Chemistry, Baicheng Normal College, Baicheng 137000, China
Abstract:Regarding raw drugs of the different habitat and the different cultivation condition,its treatment efficacy is different.This is because they contain different chemical composition and different ingredients content proportion,which causes the difference in their infrared spectra.But these differences are extremely slight,and purely differentiating their characteristics from the infrared spectra is extremely difficult.In the present paper,the samples of epimedium brevicornu from different fields of Jilin province were surveyed by Fourier transform infrared(IR) spectra,and the corresponding pretreatment to the spectra data was carried out.Before establishing model through the artificial neural networks,in order to enhance the training speed of the ANN,the spectra variables were compressed through the wavelet transformation,and the parameters of the ANN model were also discussed in detail.The model can distinguish the producing area of the 42 samples of epimedium brevicornum correctly,avoiding the separation and drawing of raw drugs with traditional spectroscopy analysis at the same time,thus offer an effectively and reliable basis for the quality controls and modernized management of Chinese medicine.
Keywords:Chinese medicine  Epimedium brevicornum  Infrared spectroscopy  Artificial neural networks  Wavelet transform
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号