首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamical decay process of 219, 220Ra* formed in 10, 11B + 209Bi reactions
Authors:G. Sawhney  M. K. Sharma
Affiliation:1.School of Physics and Materials Science,Thapar University,Punjab,India
Abstract:The excitation functions for both the evaporation residue and fission have been calculated for 10B + 209Bi and 11B + 209Bi reactions forming compound systems 219, 220Ra* , using the dynamical cluster-decay model (DCM) with effects of deformations and orientations of the nuclei included in it. In addition to this, the excitation functions for complete fusion (CF) are obtained by summing the fission cross-sections, neutron evaporation and charged particle evaporation residue cross-sections produced through the axnensuremath alpha xn and pxnensuremath pxn (x = 2, 3, 4) emission channels for the 219Ra system at various incident centre-of-mass energies. Experimentally the CF cross-sections are suppressed and the observed suppression is attributed to the low binding energy of 10, 11B which breaks up into charged fragments. The reported complete fusion (CF) and incomplete fusion (ICF) excitation functions for the 219Ra system are found to be nicely fitted by the calculations performed in the framework of DCM, without invoking a significant contribution from quasi-fission. Although DCM has been applied for a number of compound nucleus decay studies in the recent past, the same is being used here in reference to ICF and subsequent decay processes along with the CF process. Interestingly the main contribution to complete fusion cross-section comes from the fission cross-section at higher incident energies, which in DCM is found to consist of an asymmetric fission window, shown to arise due to the deformation and orientation effects of formation and decay fragments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号