首页 | 本学科首页   官方微博 | 高级检索  
     检索      

碱金属阳离子对Cu+Y催化甲醇氧化羰基化性能影响的密度泛函理论研究
引用本文:张艳青,郑华艳,章日光,李忠,王宝俊,赵秋勇.碱金属阳离子对Cu+Y催化甲醇氧化羰基化性能影响的密度泛函理论研究[J].高等学校化学学报,2015,36(10):1945.
作者姓名:张艳青  郑华艳  章日光  李忠  王宝俊  赵秋勇
作者单位:1. 太原理工大学煤科学与技术教育部和山西省重点实验室,2. 化学化工学院, 太原 030024
基金项目:国家自然科学基金(批准号: 21276169)和山西省青年科技研究基金(批准号: 2015021030)资助
摘    要:基于密度泛函理论方法构建并优化了CuMY(M为碱金属阳离子)分子筛的稳定构型, 采用速控步骤CO插入CH3O形成CH3OCO反应, 研究了碱金属阳离子对Cu+Y分子筛中活性中心周围电子环境及催化甲醇氧化羰基化合成碳酸二甲酯性能的影响. 计算结果表明, Li+, Na+和K+稳定落位于Y分子筛小笼中, 且随着金属离子半径的增大, CH3OH, CO, CH3O在CuMY上的吸附能和CO/CH3O的共吸附能均逐渐增加, CO插入CH3O反应的过渡态结构稳定性逐渐降低, 活化能逐渐上升, 相应的反应活性逐渐下降. 而落位在超笼中Ⅱ*位的Rb+与Cs+则随着离子半径的增大, 反应过渡态的结构稳定性提高, 克服的活化能降低, 反应活性升高. 不同CuMY分子筛上催化活性顺序为CuLiY-Ⅰ'>CuCsY-Ⅱ*>CuNaY-Ⅰ'>CuRbY-Ⅱ*>CuKY-Ⅰ'>CuCuY-Ⅰ', 其中CuLiY-Ⅰ'分子筛克服速控反应的活化能垒(52.74 kJ/mol)最低.

关 键 词:碱金属阳离子  密度泛函理论  CuY分子筛  氧化羰基化  碳酸二甲酯  
收稿时间:2015-04-22

Density Functional Theory Investigation on the Effect of Alkali Metal Cations on the Catalytic Performance for Cu+Y Zeolites in Oxidative Carbonylation of Methanol†
ZHANG Yanqing,ZHENG Huayan,ZHANG Riguang,LI Zhong,WANG Baojun,ZHAO Qiuyong.Density Functional Theory Investigation on the Effect of Alkali Metal Cations on the Catalytic Performance for Cu+Y Zeolites in Oxidative Carbonylation of Methanol†[J].Chemical Research In Chinese Universities,2015,36(10):1945.
Authors:ZHANG Yanqing  ZHENG Huayan  ZHANG Riguang  LI Zhong  WANG Baojun  ZHAO Qiuyong
Institution:1. Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, 2. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:On the basis of density functional theory, influence of co-cations(M=Li+, Na+, K+, Rb+)adjacenting active center Cu+ on the electronic properties and catalytic activity of Cu+Y zeolites in oxidative carbonylation of methanol to dimethyl carbonate was investigated. CuMY stable configurations were constructed, CO insertion CH3O species to CH3OCO was used to evaluate the catalytic activity of CuY zeolites, due to the fact that it was the rate-limiting step of oxidative carbonylation of methanol. The calculation results indicate that Li+, Na+, K+ cations can locate site Ⅰ' in small cages of Y zeolites surrounding the active center Cu+, the adsorption energy of CH3OH, CO, CH3O and co-adsorbed CO/CH3O on CuMY zeolite increases gradually with increase of cation size, the stability of transition states for CO insert into CH3O reaction comes to decrease, increases the activation barriers and the corresponding catalytic performance declines. Whereas, Rb+ and Cs+ cations located Ⅱ* in the supercage as increase in cation size, decreases activation energy for CO insertion reaction, improves the stability of transition states and the catalytic activity of CuY zeolites. The order of catalytic activity of CuMY zeolites is CuLiY-Ⅰ'>CuCsY-Ⅱ*>CuNaY-Ⅰ'>CuRbY-Ⅱ*>CuKY-Ⅰ'>CuCuY-Ⅰ'. The CuLiY-Ⅰ' catalyst exhibits the best catalytic performance with a lowest rate-limiting reaction activation barrier of 52.74 kJ/mol.
Keywords:Alkali metal cation  Density functional theory  CuY zeolite  Oxidative carbonylation  Dimethyl carbonate  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号