首页 | 本学科首页   官方微博 | 高级检索  
     


Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays
Authors:Schlapak Robert  Pammer Patrick  Armitage David  Zhu Rong  Hinterdorfer Peter  Vaupel Matthias  Frühwirth Thomas  Howorka Stefan
Affiliation:Center for Biomedical Nanotechnology, Upper Austrian Research GmbH, A-4020 Linz, Austria.
Abstract:Surfaces carrying a dense layer of poly(ethylene glycol) (PEG) were prepared, characterized, and tested as substrates for DNA oligonucleotide microarrays. PEG bis(amine) with a molecular weight of 2000 was grafted onto silanized glass slides bearing aldehyde groups. After grafting, the terminal amino groups of the PEG layer were derivatized with the heterobifunctional cross-linker succinimidyl 4-[p-maleimidophenyl]butyrate to permit the immobilization of thiol-modified DNA oligonucleotides. The stepwise chemical modification was validated with X-ray photoelectron spectroscopy. Goniometry indicated that the PEG grafting procedure reduced surface inhomogeneities present after the silanization step, while atomic force microscopy and ellipsometry confirmed that the PEG layer was dense and monomolecular. Hybridization assays using DNA oligonucleotides and fluorescence imaging showed that PEG grafting improved the yield in hybridization 4-fold compared to non-PEGylated maleimide-derivatized surfaces. In addition, the PEG layer reduced the nonspecific adsorption of DNA by a factor of up to 13, demonstrating that surfaces with a dense PEG layer represent suitable substrates for DNA oligonucleotide microarrays.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号