首页 | 本学科首页   官方微博 | 高级检索  
     

小微企业信用风险评估的IDGSO-BP集成模型构建研究
引用本文:胡贤德,曹 蓉,李敬明,阮素梅,方 贤. 小微企业信用风险评估的IDGSO-BP集成模型构建研究[J]. 运筹与管理, 2017, 26(4): 132-139. DOI: 10.12005/orms.2017.0093
作者姓名:胡贤德  曹 蓉  李敬明  阮素梅  方 贤
作者单位:1.安徽新华学院 信息工程学院,安徽 合肥 230088; 2.合肥工业大学 管理学院,安徽 合肥 230009; 3.合肥工业大学 人事部,安徽 合肥 230009; 4.安徽财经大学 商学院,安徽 蚌埠 230030
基金项目:国家自然科学基金项目(71403001);安徽省教育厅自然科学研究重点项目(KJ2016A308,KJ2015A300)
摘    要:
针对传统BP神经网络在小微企业信用风险评估实际应用中,随机初始权值和阈值导致网络学习速度慢、易陷入局部解以及运算结果误差较大等缺陷,借助群智能萤火虫(GSO)算法,提出一种基于改进离散型萤火虫(IDGSO)算法的BP神经网络集成学习算法的小微企业信用风险评估IDGSO-BP模型。该模型以BP神经网络为基本框架,在学习过程中引入离散型萤火虫算法,优化设计神经网络的网络结构与连接权值,得到一组相对合适的权值与阈值,再进行新一轮网络训练,以“均平方误差最小”为评价准则,产生网络的输出结果,以此建立小微企业信用风险评估模型。其仿真实验结果表明,该模型在收敛速度及运算精度方面较传统BP神经网络模型、遗传GA-BP模型及连续GSO-BP模型有较明显优势。因此,IDGSO-BP模型可以有效提高小微企业信用风险评估的准确性。

关 键 词:小微企业  信用风险评估  离散型萤火虫算法  BP神经网络  
收稿时间:2016-04-27

Research into the Credit Evaluation Model of Small and Micro BusinessesBased on IDGSO-BP Comprehensive Method
HU Xian-de,CAO Rong,LI Jing-ming,RUAN Su-mei,FANG Xian. Research into the Credit Evaluation Model of Small and Micro BusinessesBased on IDGSO-BP Comprehensive Method[J]. Operations Research and Management Science, 2017, 26(4): 132-139. DOI: 10.12005/orms.2017.0093
Authors:HU Xian-de  CAO Rong  LI Jing-ming  RUAN Su-mei  FANG Xian
Affiliation:1.School of Information Engineering, Anhui Xinhua University, Hefei 230088, China; 2.School of Management, Hefei University of Technology, Hefei 230009, China; 3.Department of Human Resources, Hefei University of Technology, Hefei 230009, China; 4.School of Business, Anhui Finance and Economics University, Bengbu 230030, China
Abstract:
Aiming at defects of slow learning speed, trapped in local solution and inaccurate operating result of BP neural network in the application of credit risk assessment of small and micro enterprises, a IDGSO-BP assessment model to measure the uncertainty credit risk of small and micro business is proposed based on Glowworm Swarm Optimization algorithm(GSO)and BP neural network. This model produces a better network architecture and initial connection weights, and trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the liner programming to calculate the best weights based on the ”Minimum square error” as the optimal rule. The simulation experimental results show that the model has obvious advantages over the traditional BP neural network model, GA-BP model and GSO-BP model in terms of convergence speed and operation accuracy. Therefore, IDGSO-BP model can effectively improve the accuracy of small and micro enterprises credit risk assessment.
Keywords:small and micro businesses  credit risk evaluation  discrete glowworm swarm optimization  back propagation neural network  
本文献已被 CNKI 等数据库收录!
点击此处可从《运筹与管理》浏览原始摘要信息
点击此处可从《运筹与管理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号