首页 | 本学科首页   官方微博 | 高级检索  
     

置换流水车间调度问题的中心引力优化算法求解
引用本文:刘勇,马良. 置换流水车间调度问题的中心引力优化算法求解[J]. 运筹与管理, 2017, 26(9): 46-51. DOI: 10.12005/orms.2017.0209
作者姓名:刘勇  马良
作者单位:上海理工大学 管理学院,上海 200093
基金项目:国家自然科学基金项目(71401106);教育部人文社会科学研究规划基金项目(16YJA630037)上海市高原学科建设项目;上海市“科技创新行动计划”软科学研究重点项目(17692109400);上海高校青年教师培养资助计划项目(ZZsl15018);上海理工大学国家级培育青年基金项目(16HJPY-QN15);上海理工大学博士科研启动经费项目(1D-15-303-005)
摘    要:目前求解置换流水车间调度问题的智能优化算法都是随机型优化方法,存在的一个问题是解的稳定性较差。针对该问题,本文给出一种确定型智能优化算法——中心引力优化算法的求解方法。为处理基本中心引力优化算法对初始解选择要求高的问题,利用低偏差序列生成初始解,提高初始解质量;利用加速度和位置迭代方程更新解的状态;利用两位置交换排序法进行局部搜索,提高算法的优化性能。采用置换流水车间调度问题标准测试算例进行数值实验,并和基本中心引力优化算法、NEH启发式算法、微粒群优化算法和萤火虫算法进行比较。结果表明该算法不仅具有更好的解的稳定性,而且具有更高的计算精度,为置换流水车间调度问题的求解提供了一种可行有效的方法。

关 键 词:置换流水车间调度  最大完工时间  中心引力优化算法  确定性  
收稿时间:2016-03-29

Solving Permutation Flow-Shop Scheduling Problem by Central Force Optimization Algorithm
LIU Yong,MA Liang. Solving Permutation Flow-Shop Scheduling Problem by Central Force Optimization Algorithm[J]. Operations Research and Management Science, 2017, 26(9): 46-51. DOI: 10.12005/orms.2017.0209
Authors:LIU Yong  MA Liang
Affiliation:Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:The existing intelligent optimization algorithms for permutation flow-shop scheduling problem are all stochastic optimization methods. One problem with these approaches is that they have poor solution stability. In this paper, a method based on central force optimization algorithm which is a deterministic intelligent optimization algorithm is proposed to resolve this problem. The basic algorithm depends upon the choice of the initial solutions. To deal with this problem, low-discrepancy sequences are used to generate initial solutions to improve the quality of initial solutions. The acceleration and position equations are employed to update the solutions. A sorting method to swap two positions in a solution is used to conduct local searches, to enhance the performance of the algorithm. The benchmarks are used to perform numerical experiments. The presented algorithm is compared with basic central force optimization algorithm, NEH heuristic algorithm, particle swarm optimization algorithm, and firefly algorithm. The results demonstrate that the proposed method not only has better solution stability but also higher accuracy. The presented approach provides a feasible and effective way to solve the permutation flow-shop scheduling problem.
Keywords:permutation flow-shop scheduling  makespan  central force optimization  deterministicness  
本文献已被 CNKI 等数据库收录!
点击此处可从《运筹与管理》浏览原始摘要信息
点击此处可从《运筹与管理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号