首页 | 本学科首页   官方微博 | 高级检索  
     


Monte Carlo simulations of segregation in Pt-Re catalyst nanoparticles
Authors:Wang Guofeng  Van Hove M A  Ross P N  Baskes M I
Affiliation:Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA. gfwang@1bl.gov
Abstract:
We have investigated the segregation of Pt atoms to the surfaces of Pt-Re nanoparticles using the Monte Carlo method and modified embedded-atom method potentials that we have developed for Pt-Re alloys. The Pt(75)Re(25) nanoparticles (containing from 586 to 4,033 atoms) are assumed to have disordered fcc configurations and cubo-octahedral shapes (terminated by [111] and [100] facets), while the Pt(50)Re(50) and Pt(25)Re(75) nanoparticles (containing from 587 to 4,061 atoms) are assumed to have disordered hcp configurations and truncated hexagonal bipyramidal shapes (terminated by [0001] and [1011] facets). We predict that due to the segregation process the equilibrium Pt-Re nanoparticles would achieve a core-shell structure, with a Pt-enriched shell surrounding a Pt-deficient core. For fcc cubo-octahedral Pt(75)Re(25) nanoparticles, the shells consist of almost 100 at. % of Pt atoms. Even in the shells of hcp truncated hexagonal bipyramidal Pt(50)Re(50) nanoparticles, the concentrations of Pt atoms exceed 85 at. % (35 at. % higher than the overall concentration of Pt atoms in these nanoparticles). Most prominently, all Pt atoms will segregate to the surfaces in the hcp truncated hexagonal bipyramidal Pt(25)Re(75) nanoparticles containing less than 1000 atoms. We also find that the Pt atoms segregate preferentially to the vertex sites, less to edge sites, and least to facet sites on the shell of Pt-Re nanoparticles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号