首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemometrical classification of ephrin ligands and Eph kinases using GRID/CPCA approach
Authors:Myshkin Eugene  Wang Bingcheng
Institution:Rammelkamp Center for Research, MetroHealth Campus, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA.
Abstract:Eph receptor tyrosine kinases are divided on two subfamilies based on their affinity for ephrin ligands and play a crucial role in the intercellular processes such as angiogenesis, neurogenesis, and carcinogenesis. As such, Eph kinases represent potential targets for drug design, which requires the knowledge of structural features responsible for their specific interactions. To overcome the existing gap between available sequence and structure information we have built 3D models of eight ephrins and 13 Eph kinase ligand-binding domains using homology modeling techniques. The interaction energies for several molecular probes with binding sites of these models were calculated using GRID and subjected to chemometrical classification based on consensus principal component analysis (CPCA). Despite inherent limitations of the homology models, CPCA was able to successfully distinguish between ephrins and Eph kinases, between Eph kinase subfamilies, and between ephrin subfamilies. As a result we have identified several amino acids that may account for selectivity in ephrin-Eph kinase interactions. In general, although the difference in charge between ephrin and Eph kinase binding domains creates an attractive long-range electrostatic force, the hydrophobic and steric interactions are highly important for the short-range interactions between two proteins. The chemometrical analysis also provides the pharmacophore model, which could be used for virtual screening and de novo ligand design.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号