Effect of moisture on the dynamic mechanical relaxation of polyamide-6/clay nanocomposites |
| |
Authors: | K. P. Pramoda Tianxi Liu |
| |
Affiliation: | Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 |
| |
Abstract: | This article investigates the effect of moisture on the dynamic mechanical behavior of polyamide-6 (PA6)/clay nanocomposites with dynamic mechanical analysis from −130 to 110 °C. The storage moduli increase with the clay loading for dried and moisture-absorbed samples because of the enhancing effect from the high-aspect-ratio nanoclay. Storage moduli for moisture-exposed samples are lower than those for dried samples; the longer the moisture absorption period is, the lower the moduli are for neat PA6 and PA6/clay nanocomposites. At temperatures below about 10 °C, however, samples exposed to moisture for longer periods tend to be stiffer than dried samples, probably because of the stiffening effect of ice. The peak temperature of the β relaxation shifts from −53 to −65 °C as the moisture content increases. The glass-transition temperature (Tg) or α relaxation dramatically shifts; its position is significantly lowered from 62 to 17 °C as the moisture content increases (longer moisture absorption period) and from 62 to 50 °C as the clay loading increases. The observed depression of the storage modulus and Tg may be attributed to the plasticization effect of moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1823–1830, 2004 |
| |
Keywords: | polyamide-6 clay nanocomposites glass transition |
|
|