首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metal ion scrambling in hexanuclear M(6)(Et(2)NCO(2))(12) complexes (M = Co,Mg). Synthesis,solid state structure,and solution dynamics of heteronuclear Co(n)Mg(6-n)(Et(2)NCO(2))(12) complexes
Authors:Caudle M Tyler  Benedict Jason B  Mobley Charles K  Straessler Nicholas A  Groy Thomas L
Institution:Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604.
Abstract:Heteronuclear diethylcarbamato complexes of the form Co(n)()Mg(6)(-)(n)()(Et(2)NCO(2))(12) were prepared from the isostructural homonuclear precursors Mg(6)(Et(2)NCO(2))(12), 1, and Co(6)(Et(2)NCO(2))(12), 2, via a solvothermal methodology. Two materials were selected for single-crystal X-ray diffraction analysis: Co(1.6)Mg(4.4)(Et(2)NCO(2))(12) and Co(2.7)Mg(3.3)(Et(2)NCO(2))(12). Both compounds crystallize in the orthorhombic space group Ccca, as do 1 and 2. The molecular structure is best described as two trinuclear M(3) units cross-linked by diethylcarbamate ligands and twisted about one another, so that the complex has overall D(2) symmetry and is chiral. Each trinuclear unit consists of two terminal pentacoordinate metal ions and one central hexacoordinate metal ion. The X-ray diffraction data were unambiguous that the Co(2+) ions migrate exclusively to the pentacoordinate sites in the heteronuclear complexes, thus demonstrating that metal ion scrambling at the molecular level must occur. The composition of individual crystals can be continuously varied for Co(2+) mole fractions chi(Co) < 0.5, and the a and c unit cell distances are linearly related to chi(Co). This indicates that the compounds behave as solid solutions. There appears to be either a chemical or crystallographic phenomenon inherent in the synthetic methodology that prevents isolation of heteronuclear materials having chi(Co) > 0.5. Solution electronic spectroscopy and molecular weight measurements show that 2 can dissociate in chloroform and cyclohexane solution to give a dimeric complex 2'. This behavior contrasts with the stability of 1 in solution, as shown by NMR. The kinetic rate profile for formation of Co(n)Mg(6-n)(Et(2)NCO(2))(12) reveals saturation kinetics and is consistent with direct attack by 2' on 1 to give the heteronuclear complex via a higher nuclearity intermediate. This study illustrates a general method for the preparation of solids based on heteronuclear Werner-type complexes of the M(6)(Et(2)NCO(2))(12) structure type, and the mechanism by which such compounds can be formed from isostructural homonuclear precursors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号