首页 | 本学科首页   官方微博 | 高级检索  
     检索      

峰值电流达几千安量级的闪电M分量放电特征及机理探讨
引用本文:蒋如斌,郄秀书,王彩霞,杨静,张其林,刘明远,王俊芳,刘冬霞,潘伦湘.峰值电流达几千安量级的闪电M分量放电特征及机理探讨[J].物理学报,2011,60(7):79201-079201.
作者姓名:蒋如斌  郄秀书  王彩霞  杨静  张其林  刘明远  王俊芳  刘冬霞  潘伦湘
作者单位:(1)南京信息工程大学遥感学院雷电科学与技术系,南京 210044; (2)中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京 100029; (3)中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京 100029;中国科学院研究生院,北京 100049
基金项目:科技部气象行业专项(批准号:GYHY2007622),国家自然科学基金(批准号:40774083,40804028),国家科技支撑计划(项目编号:2008BAC36B03)和中国科学院"百人计划"专项经费和PHR(IHLB)(批准号:PHR201008435)资助的课题.
摘    要:利用2009年山东人工触发闪电实验获取的实测雷电流资料、近距离电场和高速摄像资料,分析了6次峰值电流达几千安量级的M分量.6次M分量均对应闪电通道中明显的发光亮度的脉冲式变化,持续时间小于1 ms.M分量的电流波形和近距离电场波形均呈较为对称的V形,且波形的上升时间均为几十微秒,同步记录结果显示,电场先于通道底部电流发生变化且先达到峰值.这些M分量在发生前,闪电通道中存在一定的连续电流,通道的导电性优于先导-回击过程.M分量发生前的闪电 关键词: 闪电 M分量')" href="#">M分量 先导-回击 通道电流

关 键 词:闪电  M分量  先导-回击  通道电流
收稿时间:2010-04-27

Lightning M-components with peak currents of kilo amperes and their mechanism
Jiang Ru-Bin,Qie Xiu-Shu,Wang Cai-Xi,Yang Jing,Zhang Qi-Lin,Liu Ming-Yuan,Wang Jun-Fang,Liu Dong-Xia and Pan Lun-Xiang.Lightning M-components with peak currents of kilo amperes and their mechanism[J].Acta Physica Sinica,2011,60(7):79201-079201.
Authors:Jiang Ru-Bin  Qie Xiu-Shu  Wang Cai-Xi  Yang Jing  Zhang Qi-Lin  Liu Ming-Yuan  Wang Jun-Fang  Liu Dong-Xia and Pan Lun-Xiang
Institution:Key Laboratory of Middle Atmosphere and Global Environment observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;Graduate School, Chinese Academy of Sciences, Beijing 100049,China;Key Laboratory of Middle Atmosphere and Global Environment observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;Key Laboratory of Middle Atmosphere and Global Environment observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;Graduate School, Chinese Academy of Sciences, Beijing 100049,China;Key Laboratory of Middle Atmosphere and Global Environment observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;Department of Lightning Science and Technology, College of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044,China;Department of Lightning Science and Technology, College of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044,China;Key Laboratory of Middle Atmosphere and Global Environment observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;Graduate School, Chinese Academy of Sciences, Beijing 100049,China;Key Laboratory of Middle Atmosphere and Global Environment observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;Graduate School, Chinese Academy of Sciences, Beijing 100049,China;Key Laboratory of Middle Atmosphere and Global Environment observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;Graduate School, Chinese Academy of Sciences, Beijing 100049,China
Abstract:Characteristics of six M-components with peak currents of kilo amperes are analyzed by using the data from the artificially triggering lightning experiment in Shandong 2009, including the current at the base of the discharge channel, the surface electric field change at 30 m from the channel, and the high-speed camera records. The M-component is associated with the abrupt enhancement of channel luminosity with a duration of less than 1ms. Both the current and electric field are characteristic of relatively symmetric waveforms with a rise time of several tens of microseconds. The simultaneous records show that the electric field starts to change and reaches its peak earlier than the channel base current. Because of the obvious continuing current flowing in the channel, the conductivity of the discharge channel prior to the M-component is better than that prior to the leader-return strokes. The channel condition before the occurrence of the M-component is crucial to current amplitude and rise time. According to the waveforms of current and electric field recorded simultaneously, it is inferred that the M-component evolves from up to down and the evolvement continues after contacting the ground, and then an upward reflected process is induced. Further analysis shows that the interaction between these two processes is likely to be changed with altitude.
Keywords:lightning  M-component  leader-return stroke  discharge current
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号