Mass spectrometry analysis of synthetically myristoylated peptides |
| |
Authors: | Chen Tsefang F Yoder Jennifer D Hruby Dennis E |
| |
Affiliation: | Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331-3804, USA. |
| |
Abstract: | Myristoylpeptides were synthesized in order to determine if a neutral loss of 210 Da, C14H26O (the mass of the myristoyl moiety), was universal and observable by both liquid chromatography electrospray ionization quadrupole ion trap (LC-ESI-QIT) and matrix-assisted laser desorption/ionization time-of-flight time-of-flight (MALDI-ToF/ToF) mass spectrometry. Myristoylation was successfully introduced on the N-terminus, internally on the amino group of lysine and arginine. Larger peptides and the arginine compounds needed elevated temperatures for myristoylation. To our knowledge, this is the first report of a chemically-synthesized myristoylated arginine in a peptide. Collision energy studies for the LC-ESI-QIT instrument showed that modified peptides and a loss of 210 Da could be detected under commonly used conditions (energy level between 30 and 42%) with picomole amounts of sample. The loss of myristoyl moiety is observed on the MALDI-Tof/Tof mass spectrometer as well. Due to the hydrophobic properties of the myristoyl moiety, it is not surprising that the modified peptides all formed at least dimers, and in some cases trimers. We were also able to distinguish a mixture of two mono-myristoylated peptides. MS3 data from the LC-ESI-QIT instrument on a di-myristoylated peptide indicates the loss of 210 Da at either the N-terminus or lysine. We were also able to analyze a mixture of modified and unmodified peptides on the MALDI-ToF/ToF instrument. The data presented in this paper demonstrates the constant neutral loss of the 210 Da, C14H26O, from both N-terminally and internally myristoylated peptides can be identified unambiguously using LC-ESI-QIT or MALDI-ToF/ToF mass spectrometers. This will be a useful tool in determining the myristoylation status of candidate proteins after enzyme digestion, and in elucidating the modification sites of internal myristoyl proteins. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|