首页 | 本学科首页   官方微博 | 高级检索  
     


Variance function estimation in multivariate nonparametric regression with fixed design
Authors:T. Tony Cai  Lie Wang
Affiliation:a Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, United States
b Purdue University, 250 N. University Street, West Lafayette, IN 47907, United States
Abstract:Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Part 1) (2005) 19-41] for the constant variance case. As is the case when the number of dimensions d=1, and very much contrary to standard thinking, it is often not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference based estimator that achieves minimax rate of convergence in the one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions.
Keywords:primary   62G08   62G20
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号