首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear electromagnetic phenomena in a liquid with nonequilibrium electrical conductivity in an alternating magnetic field
Authors:K. I. Kim
Affiliation:1. Kiev
Abstract:
On the basis of [1] this note examines nonlinear electromagnetic phenomena in a dense plasma brought about by the variation in its electrical conductivity as the electrical field changes. It is well known that the electrical conductivity depends on the electric field strength due to the following causes. The electrons in moving in the electric field receive energy from the field which may be considerable over the free path length. However it is difficult for this energy to be transferred to the heavy particles. In monatomic gases the energy exchange between electrons and heavy particles comes about basically as a result of elastic collisions. Thus a noticeable difference in electron and ion temperature, determined by the electron energy balance taking radiation losses into account, turns out to be possible even for relatively weak electric fields. In molecular gases, on the other hand, the fundamental energy exchange mechanism is the excitation of the rotational and oscillatory degrees of freedom of the molecules. Thus the electron energy in these gases is dissipated relatively easily, and the electron temperature is not observed to be noticeably higher than the atomic temperature. The concept of the characteristic “plasma field” Ep is introduced in [2], which is determined for an Isotropic plasma by the relation
$$E_R = sqrt {3kTme^{ - 2delta } (omega ^2 + v_0 ^2 )} .$$
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号