Metal-Enhanced Fluorescence from Gold Surfaces: Angular Dependent Emission |
| |
Authors: | Kadir Aslan Stuart N. Malyn Chris D. Geddes |
| |
Affiliation: | (1) Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard St, Baltimore, MD 21201, USA;(2) Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Medical Biotechnology Center, University of Maryland School of Medicine, 725 West Lombard St, Baltimore, MD 21201, USA |
| |
Abstract: | The first observation of Metal-Enhanced Fluorescence (MEF) from large gold colloids is presented. Gold colloids, 40 and 200 nm diameter, were deposited onto glass substrates in a homogeneous fashion. The angular-dependent fluorescence emission of FITC-HSA, adsorbed onto gold colloids, was measured on a rotating stage which was used to evaluate MEF at all spatial angles. The emission intensity of FITC-HSA was found to be up to 2.5-fold brighter than the emission on bare glass substrates at an angle of 270 degrees. This is explained by the Radiating Plasmon Model, whereby the combined system, composed of the fluorophore and the metal colloids, emits with the photophysical characteristics of the fluorophore, after the excitation and the partial radiationless energy transfer between the excited states of the fluorophore and the surface plasmons of the gold colloids. The fluorescence enhancement was found to be higher with 200 nm gold colloids as compared to 40 nm colloids due to the increased contribution of the scattering portion of the 200 nm gold colloid extinction spectrum. These observations suggest that gold colloids could be used in MEF applications, offering more stable surfaces than the commonly used silvered surfaces, for applications requiring longer term storage and use. |
| |
Keywords: | Metal-enhanced fluorescence Gold colloids Fluorescein Silver colloids Light scattering Angular-dependent emission Radiating plasmon model Surface-enhanced fluorescence Radiative decay engineering Plasmons Plasmonics |
本文献已被 PubMed SpringerLink 等数据库收录! |
|