首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cu3V2O8 Nanoparticles as Intercalation‐Type Anode Material for Lithium‐Ion Batteries
Authors:Dr Malin Li  Dr Yu Gao  Dr Nan Chen  Dr Xing Meng  Prof Chunzhong Wang  Dr Yaoqing Zhang  Dr Dong Zhang  Prof Yingjin Wei  Dr Fei Du  Prof Gang Chen
Institution:1. Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, P.?R. China;2. State Key Laboratory of Superhard Materials, Jilin University, Changchun, P.?R. China;3. Materials Research Center, Tokyo Institute of Technology, Yokohama, Japan
Abstract:Cu3V2O8 nanoparticles with particle sizes of 40–50 nm have been prepared by the co‐precipitation method. The Cu3V2O8 electrode delivers a discharge capacity of 462 mA h g?1 for the first 10 cycles and then the specific capacity, surprisingly, increases to 773 mA h g?1 after 50 cycles, possibly as a result of extra lithium interfacial storage through the reversible formation/decomposition of a solid electrolyte interface (SEI) film. In addition, the electrode shows good rate capability with discharge capacities of 218 mA h g?1 under current densities of 1000 mA g?1. Moreover, the lithium storage mechanism for Cu3V2O8 nanoparticles is explained on the basis of ex situ X‐ray diffraction data and high‐resolution transmission electron microscopy analyses at different charge/discharge depths. It was evidenced that Cu3V2O8 decomposes into copper metal and Li3VO4 on being initially discharged to 0.01 V, and the Li3VO4 is then likely to act as the host for lithium ions in subsequent cycles by means of the intercalation mechanism. Such an “in situ” compositing phenomenon during the electrochemical processes is novel and provides a very useful insight into the design of new anode materials for application in lithium‐ion batteries.
Keywords:copper  electrochemistry  lithiation  lithium ion batteries  nanoparticles  vanadates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号